Multi Class Learning with Individual Sparsity
نویسندگان
چکیده
Multi class problems are everywhere. Given an input the goal is to predict one of a few possible classes. Most previous work reduced learning to minimizing the empirical loss over some training set and an additional regularization term, prompting simple models or some other prior knowledge. Many learning regularizations promote sparsity, that is, small models or small number of features, as performed in group LASSO. Yet, such models do not always represent the classes well. In some problems, for each class, there is a small set of features that represents it well, yet the union of these sets is not small. We propose to use other regularizations that promote this type of sparsity, analyze the generalization property of such formulations, and show empirically that indeed, these regularizations not only perform well, but also promote such sparsity structure.
منابع مشابه
MMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملThe effect of flipped class approach on math learning of students in multi-grade classes
The purpose of this study was to investigate the effect of the flipped class approach on math learning of students in multi-grade classes. This research is a quasi-experimental design of pre-test-post-test-follow-up with a control group. After studying and designing educational work, 36 elementary school students studying in two multi-level schools in the academic year 1300-1400 in Kohgiluyeh a...
متن کاملThe effect of flipped class approach on math learning of students in multi-grade classes
The purpose of this study was to investigate the effect of the flipped class approach on math learning of students in multi-grade classes. This research is a quasi-experimental design of pre-test-post-test-follow-up with a control group. After studying and designing educational work, 36 elementary school students studying in two multi-level schools in the academic year 1300-1400 in Kohgiluyeh a...
متن کاملAppendix: Sharing Features in Multi-class Boosting via Group Sparsity
In this document we provide a complete derivation for multi-class boosting with group sparsity and a full explanation of admm algorithm presented in the main paper. 1 Multi-class boosting with group sparsity We first provide the derivation for multi-class logistic loss with 1,2-norm. We then show the difference between our boosting with 1,2-norm and 1,∞-norm. We then briefly discuss our group s...
متن کاملIterative Projection Methods for Structured Sparsity Regularization
In this paper we propose a general framework to characterize and solve the optimization problems underlying a large class of sparsity based regularization algorithms. More precisely, we study the minimization of learning functionals that are sums of a differentiable data term and a convex non differentiable penalty. These latter penalties have recently become popular in machine learning since t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013